Part Number Hot Search : 
MUN2215 06031 B400C N87C196 MAX4080 MB91F SIS12VB BDW93
Product Description
Full Text Search
 

To Download DER-62 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Design Example Report
Title Specification Application Author Document Number Date Revision 3.0 W Charger using LNK363P Input: 85 - 265 VAC Output: 5.0V / 600 mA Cell Phone Charger Power Integrations Applications Department DER-62 August 24, 2005 1.0
Summary and Features * * * Low cost CV/CC cell phone charger No Load consumption less than 300 mW Meets CEC efficiency and no-load specification
The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com.
Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Table Of Contents
Introduction ................................................................................................................ 4 Power Supply Specification........................................................................................ 4 Schematic .................................................................................................................. 5 3.1 With RCD clamp ................................................................................................. 5 3.2 With Zener clamp and bias winding .................................................................... 5 4 PCB............................................................................................................................ 6 5 Bill Of Materials--RCD clamp .................................................................................... 6 6 Transformer Specification .......................................................................................... 7 6.1 Electrical Diagram............................................................................................... 7 6.2 Electrical Specifications ...................................................................................... 7 6.3 Materials ............................................................................................................. 7 6.4 Transformer Build Diagram ................................................................................. 8 6.5 Transformer Construction ................................................................................... 8 7 Transformer Spreadsheets ........................................................................................ 9 8 Performance Data .................................................................................................... 11 8.1 Efficiency vs CEC ............................................................................................. 11 8.1.1 With RCD Clamp, no bias winding ............................................................. 11 8.1.2 With Zener Clamp and Bias winding .......................................................... 12 8.2 Efficiency vs Input Voltage ................................................................................ 12 8.2.1 With RCD clamp, no bias winding.............................................................. 12 8.2.2 With zener clamp and bias winding ........................................................... 13 8.3 No-Load Input Power ........................................................................................ 13 8.3.1 RCD clamp, no bias winding...................................................................... 13 8.3.2 Zener clamp clamp and bias winding......................................................... 14 8.4 Output Regulation ............................................................................................. 14 8.5 Thermal Performance ....................................................................................... 15 8.5.1 Thermal testing set up ............................................................................... 15 8.5.2 Test results of RCD clamp ......................................................................... 15 8.5.3 Thermal performance of Zener clamp and bias winding. ........................... 15 9 Waveforms............................................................................................................... 16 9.1 Drain Voltage, Normal Operation ...................................................................... 16 9.2 Drain Voltage During Startup ............................................................................ 17 9.3 Output Voltage Start-up Profile ......................................................................... 17 10 Output Ripple Measurements ............................................................................... 18 10.1.1 Ripple Measurement Technique ................................................................ 18 10.1.2 Measurement Results ................................................................................ 20 11 Conducted EMI..................................................................................................... 21 12 Transformer construction with bias winding.......................................................... 22 12.1 Electrical Diagram............................................................................................. 22 12.2 Transformer Build Diagram ............................................................................... 22 13 Revision History.................................................................................................... 23 1 2 3
Page 2 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built.
Page 3 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
1 Introduction
This document is an engineering prototype report describing a 3.0 W power supply utilizing a LNK363P. This power supply is intended as a cell phone charger evaluation platform. Power Integrations E-shield technology of transformer construction allows this design to meet EMI requirement without using a common mode choke. The document contains the power supply specification, schematic, bill of materials, transformer documentation.
Figure 1 - Populated circuit board - Top view
2 Power Supply Specification
Description Input Voltage Frequency No-load Input Power (230 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Total Output Power Continuous Output Power Efficiency Environmental Conducted EMI Safety Ambient Temperature TAMB
Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II
Symbol VIN fLINE
Min 85 47
Typ
Max 265 64 0.5 5.75 666
Units VAC Hz W V mV mA W %
Comment
2 Wire - no P.E.
50/60
VOUT1 VRIPPLE1 IOUT1 POUT
4.75 534
5.0 60 600 3.0
20 MHz Bandwidth
59
typical at full load, 25 oC
0
50
o
C
Free convection, sea level
Page 4 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
3 Schematic
3.1 With RCD clamp
FL 9
D7 SS14 R4 68 C9 2.2 nF 50 V R10 4.7 C6 330 uF 10 V R6 1.2 k
J3
1
5
R1 100 k D2 D1 1N4005 1N4005 RF1 8.2 2.5 W C1 4.7 uF 400 V R2 100 k R3 200 D5 1N4007G
D FB BP S
C3 2.2 nF 1 kV
3 8 FL
J1
1
Q1 MMST3906 R8
85-265V AC J2
1
5
T1 EE16
VR1 BZX79-B5V1 5.1 V 2%
C2 4.7 uF 400 V D3 D4 1N4005 1N4005 L1 1 mH
R11 51 k U2B PC817D C5 100 nF 50 V
820 U2A PC817D R9 1.7 1W
J4
1
U1 LNK363
Figure 2 - Schematic with RCD clamp.
3.2
With Zener clamp and bias winding
FL 9
D7 SS14 R4 68 R7 4.7 C6 330 uF 10 V R6 1.2 k
J3
1
J1
1
D2 D1 1N4005 1N4005 RF1 8.2 2.5 W C1 4.7 uF 400 V
VR2 BZY97C200 200 V D5 1N4007GP
5
3 4 8
C9 2.2 nF 50 V
Q1 MMST3906 R8
85-265V AC J2
1
R1 130 k C2 4.7 uF 400 V D3 1N4005 D4 1N4005
D FB BP S
C3 1 uF 50 V R10 51 k
2
T1 EE16 D8 1N4148
VR1 BZX79-B5V1 5.1 V 2%
820 U2A PC817D R9 1.7 1W
J4
1
U1 LNK363 C5 100 nF 50 V U2B PC817D
L1 1 mH
Figure 3 - Schematic with zener clamp and bias winding.
Page 5 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
4 PCB
Figure 4 - Printed circuit board
5 Bill Of Materials--RCD clamp
Item Qty Value Description 1 2 4.7 uF 4.7 uF, 400 V, Electrolytic, (8 x 11.5) 2 1 2.2 nF 2.2 nF, 1 kV, Disc Ceramic 3 1 100 nF 100 nF, 50 V, Ceramic, X7R, 0805 4 1 330 uF 330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm 5 1 2.2 nF 2.2 nF, 50 V, Ceramic, X7R, 0805 6 4 1N4005 600 V, 1 A, Rectifier, DO-41 7 1 1N4007G 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41 8 1 SS14 40 V, 1 A, Schottky, DO-214AC 13 1 1 mH 1 mH, 0.15 A, Ferrite Core 14 1 MMST3906 PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323 15 2 100 k 100 k, 5%, 1/4 W, Metal Film, 1206 16 1 200 200 R, 5%, 1/8 W, Metal Film, 0805 17 1 68 68 R, 5%, 1/8 W, Metal Film, 0805 18 1 1.2 k 1.0k 5%, 1/8 W, Metal Film, 0805 19 1 820 820 R, 5%, 1/8 W, Metal Film, 0805 20 1 1.7 1.7 R, 5%, 1 W, Metal Oxide 21 1 8.2 8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound 22 1 4.7 4.7 R, 5% Metal film 0805 23 1 51 k 51 k, 5% Metal film 0805 24 1 EE16 Bobbin, EE16 Horizontal, 10 Pins 25 1 LNK363P PI's device 26 1 PC817D Opto coupler, 35 V, CTR 300-600%, 4-DIP 27 1 BZX79-B5V1 5.1 V, 500 mW, 2%, DO-35 Ref C1 C2 C3 C5 C6 C9 D1 D2 D3 D4 D5 D7 L1 Q1 R1 R2 R3 R4 R6 R8 R9 RF1 R10 R11 T1 U1 U2 VR1
Page 6 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
6 Transformer Specification
6.1 Electrical Diagram
5 WD#1 Cancellation 25T #36X2 Floating Floating WD#3 Shield WD#2 Primary 8T #29X3 5 5 152T #36 3
Figure 5 - Transformer Electrical Diagram
9 10T # 26 TIW 8 WD#4 Secondary
6.2
Electrical Specifications Electrical Strength Primary Inductance (Pin 3 to Pin 5) Resonant Frequency. (Pin 3 to Pin 5) Primary Leakage Inductance. (Pin 3 to Pin 5)
60Hz 1minute, from Pins 1-5 to Pins 6-10 All windings open All windings open Pins 9-8 shorted
3000 V ac 1940 uH +/- 5% at 132 KHz 700 kHz (Min.) 110 uH Max.
6.3
Materials Item [1] [2] [3] [4] [5] [6] [7]
Description Core: PC40EE16-Z, TDK or equivalent Gapped for AL of 84 nH/T2 Bobbin: Horizontal 10 pin Magnet Wire: #36AWG Magnet Wire: #29 AWG Triple Insulated Wire: #26 AWG. Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.2 mm wide Varnish
Page 7 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
6.4
Transformer Build Diagram
8 9 Secondary Tape 5 5 WD#3 Shield Tape WD#2 Primary 3 Tape 5
Figure 6 - Transformer Build Diagram
WD#1 Cancellation
6.5
Transformer Construction
Primary pin side of the bobbin oriented to left hand side. Start at Pin 5. Wind 25 bifilar turns of item [8] from right to left. Wind with tight tension across entire bobbin evenly. Cut at the end. 4 Layers of tape [6] for insulation. Start at pin 3 wind 51 turns of item [3] from left to right. Apply 1 layer tape of [6]. Then wind another 50 turns next layer from right to left. Apply 1 layer tape of [6]. Wind the rest 51 turns in third layer from left to right. Wind with tight tension across entire bobbin evenly Finish at pin 5 2 Layers of tape [6] for insulation. Start at Pin 8 temporarily, wind 8 Trifilar turns of item [4]. Wind from right to left with tight tension. Wind uniformly, in a single layer across entire width of bobbin. Finish at pin5. Cut at the start lead. 2 Layers of tape [6] for insulation. Start at pin 9, wind 10 turns of item [5] from right to left. Wind uniformly, in a single layer across entire bobbin evenly. Finish on pin 8. 3 Layers of tape [6] for insulation. Assemble and secure core halves. Varnish
WD1 Cancellation Winding Insulation WD#2 Primary winding
Insulation WD #3 Shield Winding Insulation WD #4 Secondary Winding Outer Insulation Core Assembly Varnish
Page 8 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
7 Transformer Spreadsheets
ACDC_LinkSwitchXT_063005; Rev.0.2; Copyright Power Integrations 2005 ENTER APPLICATION VARIABLES VACMIN VACMAX fL VO IO CC Threshold Voltage PO n Z tC CIN 0.60 0.75 2.90 9.40 INPUT INFO OUTP UNIT UT ACDC_LinkSwitch-XT_063005_Rev0-2.xls; LinkSwitchXT Continuous/Discontinuous Flyback Transformer Design Spreadsheet
85 265 50 5.00 0.60 1.00
Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Output Voltage (main) Power Supply Output Current Voltage drop across sense resistor. For CV only circuits enter "0" 3.6 Watts Output Power (VO x IO + CC dissipation) Efficiency Estimate at output terminals. For CV only designs enter 0.7 if no better data available 0.75 Loss Allocation Factor (suggest 0.5 for CC=0 V, 0.75 for CC=1 V) mSec Bridge Rectifier Conduction Time Estimate onds uFara Input Capacitance ds
Volts Volts Hertz Volts Amps Volts
ENTER LinkSwitch-HF VARIABLES LinkSwitch-XT Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS VD KP
LNK36 3
Univer 115 Doubled/230V sal LNK363 Power 10 W 10 W Out 0.195 Amps Minimum Current Limit 0.225 Amps Maximum Current Limit 12400 Hertz Minimum Device Switching Frequency 0 5471.7 Hertz I^2f (product of current limit squared and frequency is 4 trimmed for tighter tolerance) 99.00 99 Volts Reflected Output Voltage 10 Volts LinkSwitch-HF on-state Drain to Source Voltage 0.5 Volts Output Winding Diode Forward Voltage Drop 0.90 Ripple to Peak Current Ratio (0.6ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EE16 Suggested smallest commonly available core Core EE16 P/N: PC40EE16-Z Bobbin EE16_B P/N: EE16_BOBBIN OBBIN AE 0.192 cm^2 Core Effective Cross Sectional Area LE 3.5 cm Core Effective Path Length AL 1140 nH/T^ Ungapped Core Effective Inductance 2 BW 8.6 mm Bobbin Physical Winding Width M 0 mm Safety Margin Width (Half the Primary to Secondary Creepage Distance) L 3 Number of Primary Layers NS 10 10 Number of Secondary Turns DC INPUT VOLTAGE PARAMETERS VMIN VMAX CURRENT WAVEFORM SHAPE PARAMETERS DMAX
83 Volts 375 Volts
Minimum DC Input Voltage Maximum DC Input Voltage
0.61
Maximum Duty Cycle Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
Page 9 of 24
DER-62
IAVG IP IR IRMS TRANSFORMER PRIMARY DESIGN PARAMETERS LP LP_TOLERANCE NP ALG BM BAC ur LG BWE OD INS DIA AWG CM CMA 12.00
3W Charger using LNK363P
0.07 0.1950 0.1746 0.09 Amps Amps Amps Amps Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current
August 24, 2005
Maximum Operating Flux Density, BM<1500 is recommended 600 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) 1654 Relative Permeability of Ungapped Core 0.27 mm Gap Length (Lg > 0.1 mm) 25.8 mm Effective Bobbin Width 0.169 mm Maximum Primary Wire Diameter including insulation 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) 0.132 mm Bare conductor diameter 36 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) 25 Cmils Bare conductor effective area in circular mils 286 Cmils/ Primary Winding Current Capacity (200 < CMA < 500) Amp
1942 uHenri es 12 % 152 84 nH/T^ 2 1494 Gauss
Typical Primary Inductance. +/- 12% Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance
TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP ISRMS IRIPPLE CMS AWGS DIAS ODS INSS VOLTAGE STRESS PARAMETERS VDRAIN PIVS
2.97 1.16 0.99 232 26
Amps Amps Amps Cmils AWG
0.41 mm 0.86 mm 0.23 mm
Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness
603 Volts 30 Volts
Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 5.50 5.5 Volts Main Output Voltage (if unused, defaults to single output design) IO1 0.60 0.600 Amps Output DC Current PO1 3.30 Watts Output Power VD1 0.500 Volts Output Diode Forward Voltage Drop NS1 10.91 Output Winding Number of Turns ISRMS1 1.160 Amps Output Winding RMS Current IRIPPLE1 0.99 Amps Output Capacitor RMS Ripple Current PIVS1 32 Volts Output Rectifier Maximum Peak Inverse Voltage CMS1 AWGS1 DIAS1 ODS1 232 Cmils Output Winding Bare Conductor minimum circular mils 26 AWG Wire Gauge (Rounded up to next larger standard AWG value) 0.41 mm Minimum Bare Conductor Diameter 0.79 mm Maximum Outside Diameter for Triple Insulated Wire
Page 10 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8 Performance Data
All measurements performed at room temperature, 60 Hz input frequency. The data were taken at the end of a 6 feet long output cable. The DC resistance of the cable is about 0.2 ohm. 8.1 Efficiency vs CEC
8.1.1 With RCD Clamp, no bias winding
Efficiency vs CEC
70% 68% 65% Efficiency (%) 63% 60% 58% 55% 53% 50% 25% 115 VAC CEC 230 VAC
50%
75%
100%
Load percentage (%)
Figure 7 - Efficiency vs load, RCD clamp.
Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.4%; 230VAC, 61.2%
Page 11 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.1.2 With Zener Clamp and Bias winding
Efficiency vs CEC
70% 68% 65% Efficiency (%) 63% 60% 58% 55% 53% 50% 25%
115 VAC CEC
50%
230 VAC
75%
100%
Load percentage (%)
Figure 8 - Efficiency vs output current with Zener clamp and bias winding.
Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.9%; 230VAC, 60.4% 8.2 Efficiency vs Input Voltage
8.2.1 With RCD clamp, no bias winding
Efficiency vs Input Voltage
65% 63% Efficiency (%) 60% 58% 55% 53% 50% 85 115 145 175 205 235 265 Input Voltage (VAC)
Figure 9 - Efficiency vs input voltage, RCD clamp , no bias winding. Tested at 3.03W output.
Page 12 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.2.2 With zener clamp and bias winding
Efficiency vs Input Voltage 65% 63% Efficiency (%) 60% 58% 55% 53% 50% 85 115 145 175 205 235 265 Input Voltage (VAC)
Figure 10 - Full load efficiency vs input voltage, zener clamp and bias winding.
8.3
No-Load Input Power
8.3.1 RCD clamp, no bias winding
No Load Consumption
125
100 Input Power (mW)
75
50
25
0 85 115 145 175 Input Voltage (VAC) 205 235 265
Figure 11 - No load consumption RCD clamp, no bias winding.
Note the CEC requirement is < 500mW
Page 13 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.3.2 Zener clamp clamp and bias winding
No Load Consum ption 50
40 Input Power (mW)
30
20
10
0 85 115 145 175 205 235 265 Input Voltage (VAC)
Figure 12 - No load consumption, zener clamp with bias winding.
8.4 Output Regulation Output characteristic was tested at the end of a 6 feet long output cable. The DC resistance of the cable is about 0.2 ohm.
VI Curve
6
5
Output Voltage (VDC)
4 115 VAC 230 VAC Low Limit 2 High Limit
3
1
0 0 100 200 300 400 500 600 700 Output Current (mA)
Figure 13 - Output characteristic
Page 14 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.5 Thermal Performance Thermal performance was measured inside an enclosure, full load, with no airflow. The ambient thermal probe was about 1 inch away from the device. 8.5.1 Thermal testing set up
8.5.2 Test results of RCD clamp
Item Ambient LNK363P 85 VAC 50C 108C at 2.82 W output (5.22V, 540mA) 265 VAC 50C 103C at 2.84 W output (5.23V, 542mA).
8.5.3 Thermal performance of Zener clamp and bias winding.
Item Ambient LNK363P 85 VAC 50C 96C at 2.82 W output (5.22V, 544mA) 265 VAC 50C 89C at 2.82 W output (5.22V, 544mA).
Page 15 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
9 Waveforms
9.1 Drain Voltage, Normal Operation
Figure 14 - Drain voltage at 85 VAC input, full load.
Figure 15 - Drain voltage at 265 VAC, full load.
Page 16 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62 9.2
3W Charger using LNK363P
August 24, 2005
Drain Voltage During Startup
Figure 16 - Drain voltage during startup, 264 VAC, full load.
9.3
Output Voltage Start-up Profile
Figure 17 - Output voltage overshoot at 85 VAC, full load.
Page 17 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Figure 18 - Output voltage overshoot at 265 VAC, full load.
10 Output Ripple Measurements
10.1.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 19 and Figure 20. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 F/50 V ceramic type and one (1) 1.0 F/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).
Page 18 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Probe Ground
Probe Tip
Figure 19 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 20 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added)
Page 19 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62 10.1.2 Measurement Results
3W Charger using LNK363P
August 24, 2005
Figure 21 - Output Ripple at 115 VAC, full load.
Figure 22 - Output Ripple at 230 VAC input, full load.
Page 20 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
11 Conducted EMI
Conducted EMI was tested at full load. The worst case results shown below.
Figure 23 - 120VAC, Line with artificial hand. RCD clamp.
Figure 24 - 230VAC, Line with artificial hand, RCD clamp.
Figure 25 - 120VAC, Line with artificial hand. zener clamp.
Figure 26 - 230VAC, Line with artificial hand, zener clamp.
Page 21 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
12 Transformer construction with bias winding
12.1 Electrical Diagram
4 WD#1 Cancellation 25T #36X2 2 Floating WD#3 Shield WD#2 Primary 8T #29X3 5 5 152T #36 3
Figure 27 - Transformer Electrical Diagram
9 10T # 26 TIW 8 WD#4 Secondary
12.2 Transformer Build Diagram
8 9 Secondary Tape 5 5 WD#3 Shield Tape WD#2 Primary 3 Tape 4 2 WD#1 Cancellation
Figure 28 - Transformer Build Diagram
Page 22 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
13 Revision History
Date Author August 24, 2005 YG Revision 1.0 Description & changes Initial release Reviewed AM / VC
Page 23 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
For the latest updates, visit our Web site: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. (c) Copyright 2004, Power Integrations.
WORLD HEADQUARTERS Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@powerint.com AMERICAS Power Integrations, Inc. 4335 South Lee Street, Suite G, Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012 e-mail: usasales@powerint.com
CHINA (SHENZHEN) Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: chinasales@powerint.com GERMANY Power Integrations, GmbH Rueckerstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: eurosales@powerint.com
ITALY Power Integrations s.r.l. Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: eurosales@powerint.com JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@powerint.com KOREA Power Integrations International Holdings, Inc. 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: koreasales@powerint.com
SINGAPORE (ASIA PACIFIC HEADQUARTERS) Power Integrations, Singapore 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@powerint.com TAIWAN Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: taiwansales@powerint.com UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James's House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: eurosales@powerint.com
CHINA (SHANGHAI) Power Integrations International Holdings, Inc. Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: chinasales@powerint.com APPLICATIONS HOTLINE World Wide +1-408-414-9660
INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India, 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: indiasales@powerint.com
APPLICATIONS FAX World Wide +1-408-414-9760
Page 24 of 24
Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com


▲Up To Search▲   

 
Price & Availability of DER-62

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X